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1 Introduction

At DESY the existing PETRA II storage ring will be converted into a 3rd generation syn-
chrotron radiation source, called PETRA III. The total beam current in PETRA III can be
limited by coupled bunch instabilities which are mainly driven by the parasitic modes of the
RF cavities. Therefore, it has been planned to use longitudinal and transverse feedback sys-
tems to achieve the design current of 100 mA. A heavily loaded pillbox type cavity, based on
the design of the DAFNE longitudinal feedback cavity, has been foreseen for the longitudinal
feedback system of PETRA III. In order to dump all the coupled bunch instabilities, the cavity
should have a maximum bandwidth of 125 MHz, which corresponds to the minimum bunch
spacing foreseen for PETRA III (4 ns). Eight single cell feedback cavities will be installed into
the PETRA III ring to damp the coupled bunch longitudinal phase oscillations. As these cav-
ities can contribute significantly to the overall impedance of the machine, it is very important
to compute the corresponding wakes and impedances. In this article analysis of the proposed
longitudinal feedback cavity for PETRA III is presented in terms of wakes and impedances,
possible higher order modes, shunt impedances and related topics.

2 Theory

2.1 Wakes and Impedances

In a particle accelerator, the charged particle beams travel inside a conducting pipe (beam
pipe), inside which a very high vacuum is maintained. In practice, the beam encounters
different cross sections of the beam pipe and interacts with them. The interaction of the
beam with its surrounding are described in detail by the wakefields [1, 2]. From the wakefields
several quantities, including the loss and kick parameters, can be calculated. The various loss

1



and kick parameters obtained in this way represent integral measures of the interaction of the
beam with the considered part of the accelerator. In order to ensure proper operation of an
accelerator and to achieve its design goals it is therefore required to know the wakefields of
different parts of the accelerator.

Let us consider a point charge moving in free space at a velocity close to the velocity
of light, c. With reference to the laboratory frame, the electric and magnetic fields of such
a relativistic particle lie nearly in a plane which is perpendicular to its path. So, a second
charge moving behind the first one on the same or on a parallel path, and at the same velocity
v ≈ c will not be subjected to any forces from the fields produced by the leading charge. The
situation is different if the two charges are moving in the vicinity of metallic objects or other
boundary discontinuities. The trailing charge will still not experience the direct fields in the
wavefront moving with the lead charge. This wavefront can, however, be scattered from the
boundary discontinuities, and this scattered radiation will be able to reach the trailing charge
and exert forces parallel and perpendicular to its direction of motion. These scattered waves
are termed wakefields, and the integrated effects of these wakefields over a given path length
of the trailing charge give rise to longitudinal and transverse wake potentials [3, 4].

Let us consider the situation shown in Fig. 1. Here, a test charge q2 with momentum p is
following a point charge q1 along a discontinuity in the beam pipe. Both the charges have the
same radial offset r from the axis and the test charge q2 is at a distant s from q1. The Lorentz
force on the test charge due to the fields generated by the point charge q1 is

F =
dp
dt

= q2 (E + c ez × B), (1)

where p denotes the momentum of the of the test charge q2, E and B denote the electric
and magnetic fields induced by the leading charge q1 and ez is the unit vector along the
z-direction.
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Figure 1: A point charge q1 traversing a cavity with an offset r followed by a test charge q2

with the same offset.

In this case, the wake potential due to the point charge q1 can be defined as:

Wδ(r, s) =
1
q1

∫ ∞

−∞
(E + c ez ×B)t=(z+s)/c dz, (2)
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assuming the position of the first particle is given by z = c t. The wake potential may be
regarded as an average of the Lorentz force on a test charge. Causality requires W(s) = 0 for
s < 0. The distant s is positive in the direction opposite to the motion of the point charge q1.
The wake potential of a Gaussian bunch with charge density:

ρ(r, t) = q1 λ(z − ct), λ(s) =
1

σ
√

2π
exp

(
−(s − s0)

2

2σ2

)

is obtained by a convolution integral with the point charge wake potential Wδ

W(r, s) =
∫ ∞

0
λ(s − s′)Wδ(r, s′) ds′. (3)

The frequency domain description for the coupling between the beam and its environment
can be obtained with the Fourier transform of the wake potential. The Fourier transform
of the longitudinal wake potential is called the longitudinal impedance or the longitudinal
coupling impedance

Z‖(x, y, ω) =
1
c

∫ ∞

−∞
W‖(x, y, s)e−

iωs
c ds. (4)

Similarly, the transverse impedance is defined as,

Z⊥(x, y, ω) =
−i

c

∫ ∞

−∞
W⊥(x, y, s)e−

iωs
c ds. (5)

The impedance spectra corresponding to a discontinuity along the beam pipe contains a
number of peaks. The sharp peaks of the impedance spectra bellow the cut-off frequency of the
beam pipe corresponds to the resonant modes of the discontinuity under consideration. Above
the cut-off frequency of the beam pipe, a continuous spectrum corresponding to the beam pipe
modes are usually seen. Although the impedances and wakes are the description of the same
quantity connected by an integral transform, they are in general used to convey complementary
information. The impedances are depicted up to a maximum frequency, whereas the wakes
are depicted up to a finite time (or distance). Therefore, the impedance representation is more
appropriate in depicting the long range phenomena, while the wake potential representation
is appropriate to represent the short range one.

From the wake potential W(s) of a Gaussian bunch the following loss and kick parameters
can be obtained:

k‖ =
∫ ∞

−∞
W‖(r = 0, s)λ(s) ds, (6)

k‖(1) =
∫ ∞

−∞
W‖(r = 0, s)

d

ds
λ(s) ds, (7)

k⊥ =
1
r

∫ ∞

−∞
W⊥(r, s)λ(s) ds. (8)
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If the total charge of the Gaussian bunch is q1, the total energy loss of the bunch [5, 6] is
given by,

∆W = q2
1 k‖. (9)

The parameter k‖(1) is a crucial parameter for the longitudinal impedance model of the
accelerator [7]. From the parameter k‖(1) and the kick parameter k⊥ the coherent tune shifts
of the lowest order bunch modes in the longitudinal (∆νs) and transverse planes (∆νβ) can
be calculated according to the following equations [8, 7]:

∆νs = νs
IB R T0

2hUrf
k‖(1), (10)

∆νβ =
IB < β > T0

4π E/e
k⊥, (11)

where νs is the synchrotron tune, IB the single bunch current, R the average radius, T0

the revolution time, h the harmonic number, Urf the total RF voltage, < β > the average
beta-function and E the energy of the accelerator.

2.2 Modal analysis and different cavity parameters

To compute the possible losses and kicks due to a particular resonant mode of the part under
consideration, an eigenmode analysis is used. The computer codes like URMEL [9], Microwave
studio (MWST) [10], MAFIA [11] etc. are generally used for this purpose. After an eigenmode
analysis of the structure under analysis, the components of electric and magnetic fields due
to computed eigenmodes can be obtained from the solver. From the numerically calculated
fields the longitudinal voltage (VL) due to a mode with angular resonant frequency ω can be
obtained as

VL(r) =
∫ L

0
Ez(r, z) exp(− iωz

c
) dz, (12)

where Ez is the longitudinal component of the electric field. The total stored energy in
the mode (considering the symmetries and time averaging) can be calculated as

U =
ε0

4

∫
|E|2 d3r (13)

From the voltage and stored energy the modal loss parameter and the ratio of the shunt
impedance and quality factor (R/Q) can be obtained. These parameters are usually calculated
using the post processor module of the computer codes (e.g. MAFIA). The loss parameter
(k(r)) and the R/Q value are calculated as:

k(r) =
|VL(r)|2

4U

R(r)
Q

=
2 k(r)

ω
(14)
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It may be noted here that a particle bunch with charge q traversing the cavity with radial
offset r will lose the energy q2 k(n)(r) into the nth mode of the cavity.

It is important to know the power Psur dissipated at the inner cavity due to the surface
resistivity Rsur. The dissipated power into the surface can be calculated from the tangential
magnetic field:

Psur =
1
2

Rsur

∫
|Hφ|2 dA. (15)

The power which is dissipated into the cavity surface can also be characterized by the
quality factor Q or the parameter G1 [12]. The parameter G1 is defined as the product of the
quality factor of the mode and the surface resistance of the cavity wall. These parameters can
be computed as,

Q =
ω U

Psur
(16)

G1 = Rsur Q. (17)

2.3 Methods for wakefield and Impedance computations

2.3.1 Using MAFIA for wakefield computations

MAFIA is a well known three dimensional electromagnetic field simulator, widely used by the
accelerator community. In the first step for wake computation with MAFIA, the geometry
under consideration is modeled using the mesh generator. Afterwards the two dimensional
eigenmode solver is used to compute the eigenmodes corresponding to the waveguide ports.
These modes are then loaded in the MAFIA time domain solver module for proper terminations
of the waveguide ports during the time domain computations. Afterwards the beam-properties
(the beam width, total charge of the beam, orientation of the beam etc.) are specified and the
time domain solver is started for an appropriate time range. Usually the minimum time range
is taken equal to the time the beam takes to traverse the whole structure under consideration.
However, it is often required to use a longer time range in order to compute the long range
wakes or to obtain a fine frequency resolution in the corresponding impedance spectrum. Once
the computations are finished, the results are exported and further processed with MATLAB
[13] for extracting different loss- and kick- parameters. These post processing tasks can also
be done using the post-processor module of MAFIA.

2.3.2 Off-axis wake computations

Computation of the wakes due to an off-axis beam usually requires at least double of the
memory required to compute the wakes due to an on-axis beam (for axially symmetric struc-
tures). This is because although the structure remains geometrically symmetric in both cases,
it becomes asymmetric with respect to the exciting off-axis beam. Due to this reason, in many
instances the available computer memory become the limiting factor for the time domain off-
axis wake computations. This problem is more severe in case of large structures, containing
small geometrical details. In order to represent the small geometrical details correctly, a fine
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meshing is required. As for the wake computations (with MAFIA) one needs an equidistant
mesh distribution in the direction of the beam, this leads to a huge number of mesh cells. In
these situations, it would be very useful if only a part (say one-quarter or one-half, depending
upon the symmetry of the considered structure) of the geometry is modeled and the wake
computation results of some combinations of different boundary conditions are obtained. Af-
terwards the results could be combined to get the response of the whole structure. In this
way, the memory requirement is halved at the cost of computational time.

To test the validity and accuracy of this method, off-axis wake computations for very simple
and small structures can be considered. At the first step two sets of wakefield computations
could be done considering an off-axis beam (say, y-offset) and one quarter of the structure.
The boundary conditions for the wake computations for the quarter geometry is tabulated
in Table 1. Then the results are combined to obtain the actual wakes for the beam with
y-offset. It can be noted here that for the first set of the boundary conditions, we can consider
the computed wakefields Wqew generated by the current (I) and its image current (-I) (as an
electric wall has been used at the y-min boundary). Similarly, for the second set of boundary
conditions (magnetic wall at the y-min boundary), the computed wakefields (Wqmw) were due
to (I) and its image current (I). As the wakefield computations involve only linear operations,
the results corresponding the excitation (I) should be simply given by Wqew+Wqmw

2 .
For the verification, the off-axis wakes can be computed directly for half of the structure

with the boundary conditions shown in Table 2. As the structure is symmetric with respect
to the yz-plane, a magnetic wall has been used along x-min (x = 0). The errors in computed
wakes between both the methods should be very small.

Beam

Magnetic wall Electric wall

Beam pipe

Half of the beam pipe
with y-offset beam

One quarter of the beam pipe
with magnetic and electric walls at xz plane

y

x

+I

- I
x

y

+I

+I

+I

x

y

Figure 2: Schematic diagram depicting the excitations and boundary conditions for off-axis
wake computations considering one half and one quarter of the beam pipe.

Two simple test geometries have been considered to demonstrate the suggested method.
The first geometry is a simple pill-box cavity along the beam pipe, while the other geometry
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boundary Boundary condition

x-min, x-max Magnetic (Magnetic), Electric (Electric)

y-min, y-max Electric (Magnetic), Electric (Electric)

z-min, z-max Waveguide(Waveguide), Waveguide (Waveguide)

Table 1: Boundary conditions used in MAFIA for the time domain wakefield computations
for one quarter of the test structure.

boundary Boundary condition

x-min, x-max Magnetic, Electric

y-min, y-max Electric, Electric

z-min, z-max Waveguide, Waveguide

Table 2: Boundary conditions used in MAFIA for the time domain wakefield computations
for half of the test structure.

contains cylindrical holes in the upper part and lower parts of the beam pipe. The first test
structure can be considered as representative of the cases where a cavity is inserted along the
beam pipe (i.e. the RF cavities, kickers etc.). In these situations usually a stong wakes is
expected. The other structure is representative of the situations where small discontinuities
are present in the beam pipe (BPMs, small transitions etc.). The MAFIA models of both test
geometries are shown in Fig. 3. The hole in the upper part of the beam pipe can be seen in
Fig. 3(b), while that in the lower part of the beam pipe is not visible.

(a) Half of the test structure geometry with
pillbox cavity.

(b) Half of the test structure geometry with
holes in the upper and lower wall of the beam
pipe.

Figure 3: One half of the geometries considered as the test structures.

The comparison between the computed longitudinal wakefields for the test structure are
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shown in Fig. 4(a). Once the longitudinal wake was computed using one quarter of the first test
structure (combining results of two different boundary conditions) and once it was computed
directly using half structure. The absolute percentage error normalized to the maximum is
shown in Fig. 4(b). Fig. 5 shows the comparison of the transverse wake and the corresponding
absolute percentage error (normalized to the maximum).
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(a) Comparison between the longitudinal compo-
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(b) Absolute percentage error (normalized to the
maximum) in longitudinal wake computation.

Figure 4: Comparison of computed longitudinal wake for the first test geometry and absolute
percentage error.

The wake computation results for the second structure are shown in Figs. 6 and 7. The
absolute percentage errors normalized to the corresponding maximum values are also shown.
From the figures it is clear that in this case the percentage error in transverse wake computation
is much higher than that of the longitudinal component. One possible reason for this may
be the difference in computing the transverse wakes considering one half of a structure and
one quarter of the same structure. The error is less than 1% in case of longitudinal wake
computations whereas it is below than 10% in case of transverse wake computations.

2.3.3 Forward and backward wave shunt impedance computation

For the shunt impedance computations, the MAFIA T3 module has been used. A Gaussian
beam suitable to excite the feedback cavity in the operating frequency band has been con-
sidered as the excitation signal. The excitation signal has been fed to the cavity through
one of the coaxial ports. In order to compute the shunt impedance, one needs to obtain the
accelerating voltage along the cavity axis corresponding to this excitation. This accelerating
voltage (Vacc) can be computed by integrating the longitudinal electric field (corresponding
to the coaxial excitation) along the cavity length. In MAFIA, the wake integration monitor
computes the wake integral according to equations 2 and 3. The orientation of the second term
of the integral of equation 2 (i.e. c ez × B) lies in the transverse plane. Therefore, this term
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(a) Comparison between the transverse component
of wake computed considering one half and one
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Figure 5: Comparison of computed transverse wake for the first test geometry and absolute
percentage error.
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(a) Comparison between the longitudinal compo-
nent of wake computed considering one half and
one quarter of the second test geometry.
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maximum) in longitudinal wake computation.

Figure 6: Comparison of computed longitudinal wake for the second test geometry and ab-
solute percentage error.

does not contribute to the longitudinal component of the integral. So, a wakefield monitor
along the path of the beam can be used to compute the accelerating voltage (Vacc) due to
the excitation through the coaxial port. In order to activate the wakefield monitor, at first
a beam with non-zero charge can be considered. Just before the time domain computational
run, the charge of the beam is set equal to zero, so that the computed acceleration voltage is
entirely due to the excitation through the coaxial port. To compute the accelerating voltage
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Figure 7: Comparison of computed transverse wake for the second test geometry and absolute
percentage error.

along the axis of the cavity, the wakefield monitor is set at x = 0, y = 0. Afterwards, a
Fourier transform is used to convert all the time domain data into the frequency domain. For
our simulations, the waveguide ports at both the ends of the beam pipe as well as the coaxial
ports have been terminated with their corresponding wave impedances. All the outgoing wave
amplitudes have been recorded at the coaxial ports. Two sets of computation runs have been
done, one for the forward wave case and the other one is for the backward wave case. The
shunt impedance (Rs) can be computed according to the equation,

Rs =
| Vacc |2
2Pin

, (18)

where Pin is the input power fed into the cavity through the coaxial ports.

3 Studies of the PETRA III longitudinal feedback cavity

3.1 PETRA III longitudinal feedback cavity

The PETRA III synchrotron radiation facility will be operating in a multibunch mode. Multi-
bunch operations of the accelerators are usually affected by several instabilities which can
considerably limit the desired beam current. The coupled bunch instabilities are among those
instabilities which are severe constraints to achieve the desired beam current and shape.

Employment of active bunch by bunch feedback system is one of the most effective measures
to dump coupled bunch instabilities. In these feedback systems, the deviations of bunches from
their reference positions are measured and a correction signal is created based on the measured
deviation. Afterwards, the correction signal is amplified and applied to the particle bunches.
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The amplified correction signal is applied to the particle bunches by means of the feedback
cavities or ‘kickers’. Both longitudinal and transverse kickers are usually employed to deliver
the appropriate component of kick. Several designs for the longitudinal feedback kickers exist,
which includes the coaxial drift tube based design (ALS, PLS, PEP-II) [14], overdamped cavity
based design (DAFNE, BESSY II, KEKB)[15], pill-box cavity with striplines (SRRC, TLS)
[16]. Among the designs mentioned above, the overdamped cavity based design is widely used
and is planned to be used for PETRA III. The longitudinal feedback cavity of PETRA III is

Figure 8: A cut view of the PETRA III longitudinal feedback cavity with nose cones.

Figure 9: Part of a technical drawing of the PETRA III longitudinal feedback cavity with
nose cones. The basic dimensions of the cavity are b = 30 mm, R = 77.8 mm, g = 60 mm
and d = 10 mm.

basically a heavily loaded pillbox cavity. It has eight coaxial ports for connection to the driving
amplifiers (input ports) and the dummy loads (output ports). A cut view of a longitudinal
feedback cavity is shown in Fig. 8. The basic dimensions of the cavity are shown in Fig. 9. A
high shunt impedance (the ratio between the square of the kick voltage seen by the beam and
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the peak forward power at the input) and high bandwidth are usually the desired parameters
for an efficient feedback cavity. It is known that in order to dump all of the coupled bunch
instabilities, the required maximum bandwidth is (fRF /2), considering all the buckets filled.
For a different filling mode, the bandwidth requirement will be different, depending upon the
spacing between the bunches. For PETRA III, the maximum required bandwidth is 125 MHz,
corresponding to a bunch spacing of 4 ns [8]. The high bandwidth of the cavity is achieved by
strongly loading it with the special ridged waveguides which can be connected to the external
loads.

3.2 Eigenmode analysis

The eigenmode solvers of MWST and MAFIA have been used to compute the resonant fre-
quencies of the feedback cavity. The mesh views at two different planes of the cavity are
shown in Fig. 10. The resonant frequencies of the first 14 modes (according to the boundary
conditions of Table 4), the modal loss parameters at zero offset and the quality factors com-
puted with MAFIA are shown in Table 4. From the table, it can be seen that the resonant
frequency of the TM010 like mode, which is to be used for the beam correction, is 1.3079 GHz
with a quality factor of 10579 (copper). The electric field distribution for this mode is shown
in Fig. 11. It can be noted that the resonant frequency of the operating TM010 mode without
the nose cones comes out to be 1.398 GHz (1.392 GHz from MWST). Therefore, the inclusion
of the nose cones have lowered the resonant frequency of the operating mode. This may be
of particular interest as there is a plan to use the nose cones for cavity tuning. From Table
4 it can be noticed that below the cutoff frequency of the beam pipe (2.93 GHz for the TE
Modes and 3.82 GHz for the TM modes) the resonant modes at frequencies 1.7692, 2.0782
and 2.4906 GHz are having high loss factors. The details of the electric field distributions of
these modes are shown in Figs. 12, 13 and 14, respectively. The conductivity of copper has
been taken as 5.8× 107 (Ω m)−1 for the computations. As can be noticed from the figures the
electric field distribution is strong around the ridges of the waveguide and have a relatively
weak distribution around the beam pipe for the modes near 1.77 GHz and 2.08 GHz.

(a) Mesh view at a transverse plane. (b) Mesh view at a longitudinal plane.

Figure 10: Mesh view at two planes for the feedback cavity.
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Boundaries Boundary conditions

x-min, x-max Magnetic, Electric

y-min, y-max Magnetic, Electric

z-min, z-max Magnetic, Magnetic

Table 3: Boundary conditions used for the eigenmode computations with MAFIA.

To compute the other resonant modes, MAFIA simulations with different boundary condi-
tions at the x-min and y-min boundary have been used. The corresponding results have been
verified by a microwave studio simulation with the full geometry of the feedback cavity. The
resonant frequencies of all the modes bellow the cutoff frequency of the beam pipe are listed in
the Table 5. The computed resonant frequencies agree within 1 percent relative difference. For
the MAFIA simulations a manual meshing scheme with diagonal filing have been used whereas
for the MWST simulations the ‘partially filled cells’ and automesh facilities have been used.
These differences in meshing is most probably the cause for the slight differences between the
computed resonant frequencies.

Mode Frequency Quality Loss Parameter (offset = 0)

No. (GHz) factor [V/(p C)]

1 1.3079 10579 3.39 × 10−1

2 1.7692 4619 1.87 × 10−2

3 1.9281 4236 5.17 × 10−10

4 1.9885 4151 2.82 × 10−9

5 2.0782 4730 3.59 × 10−2

6 2.4906 9604 7.69 × 10−2

7 2.7216 17380 2.09 × 10−11

8 3.1752 23884 1.77 × 10−12

9 3.4582 26473 1.23 × 10−3

10 3.6513 14719 2.76 × 10−11

11 3.7201 22717 3.69 × 10−4

12 3.8162 16699 1.37 × 10−2

13 3.8610 13901 5.93 × 10−3

14 4.0116 11485 1.03 × 10−10

Table 4: The resonant frequencies, quality factors (copper) and modal loss parameters for the
first 14 modes of the longitudinal feedback cavity. The corresponding boundary conditions
are shown in Table 3.

13



Figure 11: Electric field distribution of the operating TM010 like mode of the longitudinal
feedback cavity with nose cones (resonant frequency 1.3079 GHz).

(a) Three dimensional electric field distribution of the
mode near 1.77 GHz.

(b) Two dimensional projection of
the electric field at a transverse
plane.

Figure 12: The electric field distribution of the mode no. 2 (table 4) with resonant frequency
1.7692 GHz.

(a) Three dimensional electric field distribution of the
mode near 2.08 GHz.

(b) Two dimensional projection of
the electric field at a transverse
plane.

Figure 13: The electric field distribution of the mode no. 5 (table 4) with resonant frequency
2.0782 GHz.
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(a) Three dimensional electric field distribution of the
mode near 2.49 GHz.

(b) Two dimensional projection of
the electric field at a transverse
plane.

Figure 14: The electric field distribution of the mode no. 6 (table 4) with resonant frequency
2.4906 GHz.

Mode
Resonant Frequencies (GHz) Relative

Commentcomputed with difference

no. MAFIA MWST in percent

1 1.3079 1.3020 0.45 Operating mode

2 1.7692 1.7565 0.72

3 1.8337 1.8214 0.68 Degenerate mode (2 fold)

4 1.8736 1.8612 0.66 Degenerate mode (2 fold)

5 1.9281 1.9134 0.77

6 1.9884 1.9731 0.78

7 2.0782 2.0647 0.65

8 2.2387 2.2420 0.14 Degenerate mode (2 fold)

9 2.3422 2.3398 0.10 Degenerate mode (2 fold)

10 2.4906 2.4860 0.19

11 2.5482 2.5499 0.07

12 2.7215 2.7216 0.004

13 2.7249 2.7447 0.72 Degenerate mode (2 fold)

14 2.9994 2.9960 0.11

Table 5: The resonant frequencies of all the modes bellow the cutoff frequency of the beam
pipe computed with MAFIA and Microwave studio.
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3.3 Time domain analysis

3.3.1 Scattering Parameters

For the time domain computations the cavity has been modeled as a six-port device. Due
to its symmetry, only one quarter of it was modeled. Among the six ports, four are the
coaxial ports to be connected to the amplifiers and external loads. The other two ports are
waveguide ports due to the beam pipe. The modeled geometry is shown in Fig. 15, along with
the relevant coordinate system and the ports assignment. Half of the geometries of the four
coaxial ports are visible in the figure. The cutoff frequencies of the first five TM modes of
the beam pipe are listed in Table 6. It can be noted here that the operating frequency of the
feedback cavity is 1.3079 GHz, which is well below the cutoff frequency of the beam pipe.
So, there should be no influences of the beam pipe on the kicker performances in the desired
frequency band. For the scattering parameter computations, the structure has been excited
with a Gaussian Pulse through the coaxial port 1. All the other ports have been terminated
with their corresponding wave impedances. The comparison of the amplitude and phase of
the reflection coefficient at port 1 computed with MAFIA and MWST are shown in Fig. 16.
The same for the transmission coefficient from port 1 to port 2 are shown in Fig. 17. The
agreement between the results from the two codes confirms the consistency in modeling the
structure with both the softwares. To verify the point of coupling of the higher order modes of
the beam pipe, the same time domain analysis has been done with electric short circuits at the
both beam pipes. But no significant difference in the results could be found, which confirms
that there are no coupling between the beam pipe and the cavity in that frequency range. It
may be noted here that the whole structure has been considered as lossless and the automesh
facility has been used for the MWST simulations. In case of the MAFIA computations, a
manual meshing has been used. The difference between the two meshing schemes can be the
cause of the slight difference of the computed results.

Port 1 port 2

Port 3 Port 4

Port 5 Port 6

Figure 15: One quarter of the PETRA III longitudinal feedback cavity with the relevant
coordinates and the assigned ports.
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Figure 16: Amplitude and phase of the reflection coefficient at port 1.
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(a) Amplitude of the transmission coefficient from port
1 to port 2.
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Figure 17: Amplitude and phase of the transmission coefficient from port 1 to port 2.
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Mode Cutoff frequency (GHz) Cutoff frequency (GHz)

Number Microwave Studio MAFIA

1 3.822 3.829

2 4.852 4.852

3 8.12 8.174

4 8.42 8.443

5 8.73 8.789

Table 6: Cutoff frequencies of the first five TM waveguide modes of the PETRA III longitudinal
feedback cavity beam pipe computed with MWST and MAFIA.

3.3.2 Wake computations with on-axis beam

The time domain wake computations have been done for the feedback cavity with an uniform
mesh step size of 0.77 mm along the z-axis. This is a compromise between the available
computer memory and the necessity to model the small details of the cavity geometry. A
beam with an rms bunch length (σz) of 10 mm, traversing the feedback cavity on axis, has
been used as the excitation source. The #1dcurrent section of the MAFIA module T3 has been
used to define the properties of the exciting beam. A Gaussian charge distribution with a total
charge of 1 C has been used. A wakefield monitor has been placed at x = y = 0 to record the
wakefields as a function of the bunch coordinate (s). The z-component of the wake potential
(longitudinal wake) and the bunch charge density versus the bunch coordinate are shown in
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(a) Longitudinal (z) component of the wake for PE-
TRA III feedback cavity along 10 meters of the bunch
coordinate.
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(b) Longitudinal (z) component of the wake for PE-
TRA III feedback cavity and the bunch charge distrib-
ution along 0.3 meters of the bunch coordinate.

Figure 18: Longitudinal component of the wake along the bunch coordinate.
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Fig. 18. Fig. 18(b) shows the variation of the longitudinal wake potential and the bunch charge
density along 0.3 meter of the bunch coordinate. Fig. 18(a) shows the variation of the wake
along 10 meters of the bunch coordinate. The wakes were recorded for such a long time to
have enough resolution in the impedance spectrum. The longitudinal loss parameter and the
k(1) parameter computed according to the equations 6 and 7 come out to be −4.6997 × 1011

V/C and 1.7489 × 1013 V/(C m), respectively.
In order to compute the impedances of the cavity in frequency domain, a discrete Fourier

transform (DFT) has been applied to the longitudinal wakes (shown in Fig. 18). The obtained
impedance spectra has been normalized to the bunch spectrum. Fig. 19 shows the longitudi-
nal impedance spectrum of the feedback cavity. The longitudinal impedance spectra of the
feedback cavity without the nose cones can be seen in the figure 20. From the figure, it can
be noticed that the impedance peak occurs at a bit higher frequency (at 1.49 GHz) with a
smaller impedance value. Under the cutoff frequency of the beam pipe some impedance peaks
are visible due to the resonant modes of the cavity. Above the cut off of the beam pipe more
or less continuous spectra has been obtained which are due to the modes of the beam pipe.
From the plot, it may be noticed that the frequency of the first peak (corresponding to the
operating mode of the cavity) is 1.379 GHz. This is a bit higher than the computed resonant
frequency of the cavity fundamental mode (Table 4). The reason for the difference is, for the
eigenmode computations the coaxial ports of the cavity have been treated as short circuited.
On the other hand, for the time domain wake computations they have been terminated with
corresponding matched termination. Besides the peak due to the fundamental cavity mode,
presence of another impedance peak at 2.278 GHz can be noticed. The output wave ampli-
tudes recorded at ports 1 and 2 are shown in Fig. 21. As the beam has been launched from the
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Figure 19: Longitudinal impedance versus frequency for the longitudinal feedback cavity. The
coaxial ports are terminated with matched terminations.
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Figure 20: Longitudinal impedance versus frequency for the longitudinal feedback cavity with-
out the nose cones. The coaxial ports are terminated with matched terminations.

left hand side, which is nearer to the port 1, the recorded wave amplitude at port 1 becomes
non-zero at first. Due to the symmetry of the cavity, the output signals recorded at ports 3
and 4 are exactly same as those recorded at port 1 and 2.

To investigate the influences of the coaxial port terminations on the wakes and corre-
sponding impedance spectra, the wake computations were repeated with short circuits to all
the coaxial ports. All the other simulation parameters except the coaxial port terminations
have been kept unchanged. The resulting longitudinal wakes along the bunch coordinate is
shown in Fig. 22. As in the previous plot, the variation of the wake potential along 10 m of the
bunch coordinate is shown in Fig. 22(a). Fig. 22(b) shows the details of the short range wake
along with the bunch charge density at the beginning of the bunch coordinate. The effect of
matched terminations at the coaxial waveguide ports are clearly noticeable if we compare the
variation of the wakes as plotted in Fig. 18(a) and Fig. 22(a). The corresponding longitudinal
impedance spectrum is plotted in Fig. 23. As compared to the previous impedance spectrum,
the impedance peaks are much higher and sharp. The impedance peak corresponding to the
fundamental cavity mode now appears at 3.19 GHz which is closer to the frequency of the
same mode found by the eigenmode analysis. It may be noted here that although the coaxial
ports have been terminated with short circuits, the two ports due to the beam-pipes (ports 5
and 6) have still been considered as waveguide ports to allow the excitation beam. Therefore,
all the boundary conditions of the cavity in this case are not completely identical with those
considered during the eigenmode computations. Impedance peaks at 1.77 GHz, 2.07 GHz and
2.488 GHz (corresponding to the modes no. 2, 7 and 10 of Table 5 respectively) appear in
the impedance spectra, which were absent in the impedance spectra with the coaxial ports
matched.
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Figure 21: Output wave amplitudes at ports 1 and 2 during the wakefield computation.
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(a) Longitudinal (z) component of the wake for the PE-
TRA III feedback cavity along 10 meters of the bunch
coordinate with the coaxial ports terminated with short
circuits.
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(b) Longitudinal (z) component of the wake for the PE-
TRA III feedback cavity and the bunch charge distri-
bution along 0.3 meters of the bunch coordinate with
the coaxial ports terminated with short circuits.

Figure 22: Longitudinal component of the wake along the bunch coordinate with short cir-
cuited coaxial ports.
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Figure 23: Longitudinal impedance versus frequency for the longitudinal feedback cavity with
coaxial ports terminated with short circuits.

3.3.3 Wake computations with off-axis beam

To compute the transverse kick parameters and impedances, the transverse wake components
are required. This requires excitation of the cavity with an off-axis beam. For these com-
putations, the method described in section 2.3.2 has been used. A beam with 2 mm offset
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(a) Longitudinal (z) component of the wake normalized
to the beam offset.
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(b) Transverse (y) component of the wake normalized
to the beam offset.

Figure 24: Longitudinal and transverse component of the wake normalized to the beam offset
for the PETRA III feedback cavity.
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Figure 25: Longitudinal and transverse impedances normalized to the beam offset for the
PETRA III feedback cavity.

in the y-direction has been used as the excitation source, while the other parameters of the
beam were same as before. Fig. 24 shows the longitudinal and transverse components of the
wake potential along the bunch coordinate normalized to the beam offset. It may be noted
here that for transverse wake computations, all the coaxial ports have been terminated with
matched terminations. The longitudinal and transverse impedance normalized to the beam
offset is shown in Fig. 25. In the transverse impedance spectra, impedance peaks are visible at
the frequencies 2.16 GHz, 2.25 GHz, 2.64 GHz, 2.73 GHz. The impedance peak at 2.25 GHz
corresponds to the resonant frequency of the mode no. 8 and that at 2.73 GHz corresponds to
the resonant frequency of the mode nos. 12 and 13 of Table 5. The longitudinal loss parameter
and k(1) parameter computed according to the equations 6 and 7 for the 2.0 mm offset beam
comes out to be −4.7400× 1011 V/C and 1.7195× 1013 V/(C m), respectively. Corresponding
transverse kick parameter (normalized to the beam offset) computed according to the equation
8 is 1.3150 × 1013 V/(C m). All the loss and kick parameters are summarized in Table 7.

Longitudinal loss k(1) parameter Transverse kick

parameter [V/C] [V/(C m)] parameter [V/(C m)]

−4.6997 × 1011 1.7489 × 1013 n.a.

−4.7400 × 1011 1.7195 × 1013

1.3150 × 1013

(offset = 2.0 mm) (offset = 2.0 mm)

Table 7: The loss and kick parameters for the PETRA III longitudinal feedback cavity with
nose cones.

All the loss and kick parameters for the same feedback cavity without the nose cones
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have also been evaluated. No significant changes have been noticed in the corresponding
parameters. For the shake of comparison those parameters are also shown in the Table 8.

Longitudinal loss k(1) parameter Transverse kick

parameter [V/C] [V/(C m)] parameter [V/(C m)]

−4.5244 × 1011 1.4127 × 1013 n.a.

−4.5507 × 1011 1.3882 × 1013

1.0723 × 1013

(offset = 2.0 mm) (offset = 2.0 mm)

Table 8: The loss and kick parameters for the DESY longitudinal feedback cavity without
nose cones.

3.3.4 Shunt impedances

For the shunt impedance computations, the MAFIA T3 module has been used as described in
the section 2.3.3. The correction signal to the beam is to be applied through one of the coaxial
ports. Therefore, it is of interest to plot the variation of the electric field along the cavity axis
with time corresponding to an excitation through a coaxial port. Fig. 26 shows the variation
of the longitudinal electric field along the cavity axis with time. The longitudinal electric
field has been shown along the vertical axis (along z), whereas the distance along the cavity
axis and the time have been plotted along the x and the y axes respectively. The color-bar
represents the strength of the electric field component.

Two sets of computation runs have been done, one for the forward wave case and the
other one is for the backward wave case. For the forward wave case, the excitation signal is
fed through the one of the upstream coaxial ports, while keeping all the other ports matched.
As the beam pipe is circular, it is sufficient to use one coaxial port for the excitations. Fig. 27
shows the variations of computed forward and backward wave shunt impedances for the feed-
back cavity. From the plot, it can be noticed that the maximum of the shunt impedances occur
around 1.38 GHz with a maximum value of 1282 Ω (for the forward wave). Both the forward
and the backward wave shunt impedances are a bit lower than those of ELETTRA/SLS kicker
[17]. It may be noted here that for the shunt impedance computations, all the coaxial ports
have been terminated with corresponding matched terminations. The shunt impedance value
may be increased further by applying short circuits at some of the coaxial ports. Another
interesting point is to study the effect of the nose cones on the shunt impedances. To appraise
this point, the same computations have been carried out for the feedback cavity without the
nose cones. The computed shunt impedances are shown in Fig. 28. From Figs. 27 and 28, it
is clear that the inclusion of the nose cones have improved the shunt impedances about 13%.
The frequency corresponding to the peak of the shunt impedance have also been increased
(1.495 GHz) compared to that with the nose cones (1.38 GHz). The maximum value of the
forward wave shunt impedance without nose cones comes out to be 1134 Ω.
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Figure 26: Variation of the longitudinal electric field along the feedback cavity axis with time.

4 Summary

The wakes and impedances computation results for the PETRA III longitudinal feedback cav-
ity have been presented. Both on- and off-axis wakes and related loss and kick parameters
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Figure 27: Forward and backward wave shunt impedances for the feedback cavity with the
nose cones.
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Figure 28: Forward and backward wave shunt impedances for the feedback cavity without the
nose cones.

have been estimated. Modal analysis have also been done in order to supplement the time
domain wake computation results. The effect of inclusion of the ‘nose cones’ on the resonance
frequency of the operating mode has been pointed out. The effect of the coaxial port termi-
nations on the wakes and impedances of the cavity have been studied. It has been confirmed
through simulations that the inclusion of nose cones should increase the corresponding shunt
impedance without any significant adverse effect on the cavity performance.
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